Structural and Aerodynamic Models in the Nonlinear Flight Dynamics of Very Flexible Aircraft
نویسندگان
چکیده
An evaluation of aerodynamic and structural models is carried out for their application to flight dynamics of low-speed aircraft with very-flexible high-aspect-ratio wings. The structural dynamic approaches include displacement-based, strain-based, and intrinsic (first-order) geometrically-nonlinear composite beam models, while thin-strip and vortexlattice methods are considered for the unsteady aerodynamics. We first show that all different beam finite-element models (previously derived in the literature from different assumptions) can be consistently obtained from a single set of equations. This approach has been used to expand existing strain-based models to include shear effects. Comparisons are made in terms of numerical efficiency and simplicity of integration in flexible-aircraft flight dynamics studies. On the structural modeling, it was found that intrinsic solutions can be several times faster than conventional ones for aircraft-type geometries. For the aerodynamic modeling, thin-strip models based on indicial airfoil response are found to perform well in situations dominated by small amplitude dynamics around large quasi-static wing deflections, while large-amplitude wing dynamics require 3-D descriptions (e.g., vortexlattice or similar).
منابع مشابه
Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft
An evaluation of computational models is carried out for flight dynamics simulations on low-speed aircraft with very-flexible high-aspect ratio wings. Structural dynamic models include displacement-based, strain-based, and intrinsic (first-order) geometrically-nonlinear composite beams, while thin-strip and vortex lattice methods are considered for the unsteady aerodynamics. It is first shown t...
متن کاملGust Load Alleviation Control for Very Flexible Aircraft
This paper focuses on the development of a wind gust load alleviation control system for implementation in very flexible aircraft. The gust load alleviation system is designed using Linear Quadratic Gaussian (LQG) control techniques, and it is based on a nonlinear model of the coupled rigid-body and elastic modes of a very flexible aircraft. The nonlinear model contains the dynamics of the airc...
متن کاملIntegrated Flight Dynamic Modeling of Flexible Aircraft with Inertial Force-Propulsion-Aeroelastic Coupling
This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using...
متن کاملNonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft
This paper presents a study on the coupled aeroelastic/flight dynamic stability and gust response of a blendedwing-body aircraft that derives from the U.S. Air Force’s High Lift-Over-Drag Active (HiLDA) wing experimental model. An effective method is used to model very flexible blended-wing-body vehicles based on a low-order aeroelastic formulation that is capable of capturing the important str...
متن کاملOn the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کامل